
54 

Acta Cryst. (1970). A26, 54 

X-ray Diffraction from Double Hexagonal Close-Packed Crystals with Stacking Faults 
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The general theory of X-ray diffraction by double hexagonal close-packed crystals with stacking faults 
is developed. The intensity distribution in reciprocal space is derived as a function of nine parameters 
which represent the fault probabilities. Only reflexions with H - K  ¢ 0 mod 3 are affected. For these, 
there are generally changes in peak integrated intensity and peak broadening. In addition, reflexions 
with L = + 1 mod 4 exhibit peak shift and peak asymmetry. It is shown that seven independent com- 
binations of the fault parameters can be evaluated from the measured profile characteristics. 

Introduction 

This work forms a part of a programme of study of 
imperfections, particularly stacking faults, in double 
hexagonal close-packed (d. h. c. p.) crystals. This struc- 
ture can be considered as a layer structure produced by 
the regular stacking of its basal planes. Possible 
deviations in the regular . . .  ABAC . . .  stacking se- 
quence have been considered by Lele, Prasad & Rama 
Rao (1969; 1970). Seven intrinsic and two extrinsic 
faults are of interest. The fault vector, R, which repre- 
sents the displacement due to the fault is given in Table 
1, for all nine faults. We note that intrinsic c, 2c, 3c and 
extrinsic 4c faults can occur only after h type layers 
while intrinsic h, 2h, 3h faults can occur only after c 
type layers. Intrinsic ch and extrinsic cch faults can, 
however, occur after either type of layer, c and h 
respectively denote the cubic and hexagonal configu- 
ration of a layer. The structures resulting due to the 
introduction of faults of one type successively are also 
indicated in Table 1. Further, the numbers of layers 
common to the regions on either side of a fault are 
respectively 2, 1 and 0 for intrinsic c and h faults, in- 
trinsic 2c and 2h faults, and intrinsic 3c, 3h and ch 
faults. For extrinsic 4c and cch faults, one layer called 
an extra-ordinary layer does not belong to either region 
on the two sides of a fault. 

Diffraction by intrinsic c and h faults, which are 
'growth' faults with a three layer range of interaction, 
was first considered by Jagodzinski (1949) and subse- 
quently by Kakinoki & Komura (1952), Allegra 
(1964) and Kakinoki (1967). These treatments have, 
however, not been carried far enough to relate the 
diffraction theory to experimentally observable char- 
acteristics of a d. h. c.p. powder pattern. Diffraction by 
intrinsic ch faults, which are 'deformation' faults, has 
been considered by Gevers (1954) and by Lele, Prasad 
& Anantharaman (1969). Intrinsic 3c faults in d. h. c. p. 
crystals can be alternatively regarded as extrinsic 3c 
faults in h. c.p. crystals. Diffraction effects due to these 
faults have been found by Lele, Anantharaman & 
Johnson (1967) and by Holloway (1969). In the present 
paper: we shall consider X-ray diffraction from d. h. c. p. 

crystals with the nine types of stacking faults mentioned 
above. The earlier treatments of Jagodzinski (1949), 
Gevers (1954) and Lele et al. (1967) form special cases. 
The mathematical procedure utilized for the solution is 
an extension of that of Lele (1969) in which difference 
equations, relating adjacent layers only, are first for- 
mulated. This approach avoids an over-specification of 
the problem and thus possible errors. We shall first 
find the intensity distribution in reciprocal space and 
then give expressions for measurable characteristics of 
the fault profiles. The calculations are subject to the 
following assumptions: 
1. The fault probabilities are small (usually these values 

are of physical interest and the assumption obviates 
consideration of the simultaneous occurrence of 
faults). 

2. The crystal is infinite in size and free of distortion. 
3. The scattering power is the same for all the close- 

packed layers in case of alloys. 
4. There is no change in the lattice spacing at the faults. 
5. The faults are distributed at random. 
6. The faults extend over entire domains. 

General expression for diffracted intensity 

In terms of hexagonal basis vectors A:, Az, A3, the 
position vector of (ml, m2) atom in the m3 layer of a 
possibly faulted d. h. c. p. crystal is 

Rm ~--- mlA1 + mzA2 + 1 .  m3A3 + S. qms (1) 

where the stacking off-set vector 

S = ½ (A1- A2) (2) 

and is identical with the glide vector S in Table 1. 
Expressing vectors in reciprocal space in terms of the 
vectors Bb B2, B3 reciprocal to Am, A2, A3 and con- 
tinuous variables hi, h2, h3, the diffracted intensity is 
given by (Warren, 1959) 

c o  

I(h3) = lilt 2 ~. (exp[2zci(HB1 + KB2 + h3B3). S(qm 3 
1 1 " / =  - -  

-qm'3)]) exp [2rci mh~/4] 
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o o  

= ~2 ~ (exp [iq0m]) exp [rcimh3/2] (3) 
m ~ - - ~  

where ~,z is a function of h~ and hz which vanishes 
except when hi = H and h2 = K. The phase difference 
q~m is given by 

2n 
q~m = ~ ( H - K )  (qm3-qm3)=~oo(H-K)qm (4) 

where ~00=(2z/3). From equations (3) and (4), it is 
clear that only reflexions with H - K % O  rood 3 are 
affected by faulting. We shall concern our selves further 
only with reflexions with H -  K =  1 rood 3 since the case 
H - K =  2 rood 3 is equivalent to it. 

layer as the origin layer such that the stacking off-set 
from this layer to the next is + S. To distinguish it we 
give a subscript 0, as in A0. The other layers are now 
numbered consecutively and the layer n has a subscript 
j = n  rood 4. Thus the perfect d.h.c.p, structure may 
be represented as 

c h c h c h c h 
Ao B1 Az C3 Ao Bx A2 C3 

+ S  - S  - S  + S  + S  - S  - S  

c h c h c h c h 
Bo C1 Bz A3 Bo C1 B2 A3 

+ S  - S  - S  + S  + S  - S  - S  

Diffraction from faulted crystals 

The essential problem in finding the intensity distri- 
bution in reciprocal space is the evaluation of 
(exp[i~m]) [see equation (3)]. There are several 
equivalent approaches to a solution of this problem 
(Wilson, 1942; Hendricks & Teller, 1942; M6ring, 
1949; Johnson, 1963). Our approach is outlined in the 
following. Let P(qbm) be the probability of obtaining a 
phase difference ~bm between the mth layer and the 
origin layer in an m-layer sequence in the faulted 
crystal, then 

(exp [iqOm]) = ~ P(qSm) exp [i~5m]. (5) 

Therefore we shall find (1) an expression for ~m in 
terms of the numbers of faults of different types in the 
sequences and (2) a recurrence relation for P(#m) in 
terms of the fault probabilities. On substitution of 
these two relations in equation (5), we obtain a recur- 
rence relation for (exp [iqbm]). Utilizing initial condi- 
tions, i.e. values of (exp [iCIgm]) for m = 0  to 4 obtained 
by a consideration of all possible sequences up to 
m = 4, we get a solution for the recurrence relation in 
(exp [i~m]). Substitution of this solution in the inten- 
sity equation (3) yields the intensity distribution in 
reciprocal space explicitly in terms of the fault proba- 
bilities. 

In the perfect d. h. c. p. structure, we distinguish four 
types of layers characterized in that (1) they are in a c 
or h configuration, (2) the stacking off-set to the 
succeeding layer is + S or - S .  We choose any c type 

c h c h c h c h 
Co A1 (72 B3 Co A1 C2 B3 

+ S  - S  - S  + S  + S  - S  - S  

where we have indicated the configuration (c or h) of 
the layer, the stacking off-set vector (+  S or - S )  and 
the appropriate subscript. We note that the subscript 
to a layer is uniquely related to the stacking off-set 
vector. 

In faulted crystals, there are six types of layers be- 
sides the four considered above. As already noted, one 
layer called an extra-ordinary layer does not belong to 
either region on the two sides of an extrinsic 4c fault as 
also an extrinsic eeh fault. This extra-ordinary layer is 
designated B~I or C~1 respectively according as it 
occurs after a C3 or B1 layer for extrinsic 4e faults. For 
extrinsic cch faults, we designate the extra-ordinary 
layer Cg2, C~2, B~2, Bg2 according as it occurs after an 
A0, BI, A2, C3 layer respectively. 

We shall first consider sequences which begin and 
end with ordinary layers. In a perfect crystal, let the 
phase difference in an n-layer sequence starting with a 
layer of type X be ¢~x. For a sequence starting with A0 
type layer, we have 

~ ° = ½ [ 1 - ( - 1 ) n ] × i  n-1. ~Oo, n>O. (6) 

since the displacement + S corresponds to the phase 
shift + ~00 and i=  IF-1. We now, consider the effect 
of introducing k c intrinsic c, k h intrinsic h, k ze intrinsic 
2e, k zn intrinsic 2h, k3e intrinsic 3e, k 3h intrinsic 3h, k en 
intrinsic ch, k 4e extrinsic 4c and k een extrinsic cch faults. 

Table 1. Process o f fault formation, fault vector and resultant structure on insertion of successive faults. 

Fault Resultant 
Fault Process of formation vector* R structure 

Intrinsic-c Insertion of 1 layer + Glide + F + S c 
Intrinsic-h Removal of 1 layer + Glide - F + S h 
Intrinsic-2c Insertion of 2 layers + Glide + 2F + S c 
Intrinsic-2h Removal of 2 layers -2F  h 
Intrinsic-3c Removal of 1 layer -- F h 
Intrinsic-3h Insertion of 1 layer + Glide + F -T- S e 
Intrinsic-ch Glide + S ch 
Extrinsic-4c Double glide ~ S ch 
Extrinsic-cch Insertion of 1 layer + F ¢¢ch 

* F=¢[O001!, S=~.[1]'O0 I, 
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Recalling the process of formation of these faults 
(Table 1), the first step in their formation consists in 
insertion of 

K~ = k c + 2k 2c + k 3n + k ccn (7) 

layers and removal of 

K r = k n  + 2k2h + k 3c (8) 

layers. This changes the numbering of the layers so 
that the layer n in the perfect crystal becomes the layer 
m in the faulted crystal with 

m = n + Ki - Kr . (9) 

The subscript of the layer m in the faulted crystal 
would thus be 

j = n  mod 4 = ( m - K ( + K r )  mod 4 (10) 

The second step consists in gliding k e, k h, k at, k 3n, 
kcn, k 4c layers through + S. The direction of glide de- 
pends on the value o f j  and is given in Table 2. Denot- 
ing the number of faults of type Y occurring at a 
particular value o f j  by k]', we have 

kY= ' f ,  k~ ( l l )  
J 

Table 2. Dependence o f  glide vector on j value 

Value of] for glide through 
Fault + S - S 

Intrinsic-c 3 1 
Intrinsic-h 0 2 
Intrinsic-2c 2 0 
Intrinsic-3h 2 0 
Intrinsic-ch 0, 1 2, 3 
Extrinsic-4c 3 1 

It follows that the glide operation gives rise to an 
additional phase shift of 

~¢gliae = (K~o- Kn) ~Oo (12) 
where 

Kp=k~+k~d+k~+k~h+k~h+k~h+k3 ~ (13) 
g n -  e h 2c 3h ch ch 4c - k 3 + k 2 + k o  +ko +k2 +k3 +kl  (14) 

From equations (6) to (14) and the above considera- 
tions, we obtain for the phase difference between the 
mth layer and the origin layer 

¢~°= [x2{1-(- 1)m-g,+K,} (i)m-K,+K,-1 

+ ( K p -  Xn)](00, m >_ 0. (15) 

Expressions for phase differences of sequences starting 
with B1, A2, C3 type layers can be obtained similarly. 
Further, phase differences for m-layer sequences be- 
ginning and/or ending with extra-ordinary layers can 
be obtained from those for ordinary-ordinary (m-1) -  
or (m-2)-layer sequences respectively by adding extra- 
ordinary layers at either or both ends. 

Let the probability of occurrence of a fault of type Y 
be a¥ and let the probability of obtaining an m-la),er 

sequence having k e, k n, k 2e, k 2n, k 3e, k 3n, kcn, k 4e, k con 
faults with origin at Ao be P(m, j ,  k e, k n, k 2c, k 2n, k 3e, 
k 3n, ken, k he, keen), where j has been defined through 
equation (10). We shall abbreviate this to P(m, j) .  
Further, the probability of occurrence of a sequence 
with a change in any of the k's, e.g. P (m, j ,  k c -  1, k n, 
k 2e, k 2n, k 3e, k 3n, ken, k 4c, kccn) will be abbreviated to 
P(m,j ,  k c -  1). To relate P(m, j )  and the a's, we consider 
the transition probabilities for going from the ( m -  1)th 
layer to the mth layer. As noted earlier, only intrinsic 
h, 2h, 3h, ch and extrinsic cch faults can occur after A0 
or A2 layers with probabilities 0~h, a2h, a3n, acn and C~ceh 
respectively. The layer type following A0(A2) layer in 
the absence of a fault is B1(C3) occurring with probabil- 
ity Gh(a) = (1 -- an-- azn-- a3n-- aen-- acen). Therefore, in 
the presence of a fault, the layer following Ao(A2) is 
C(B). The subscript of the C(B) layer can be found by 
considering the process of formation of the fault in 
addition to the usual change in ( m - 1 )  to m in going 
from one layer to the next. For example, an intrinsic h 
fault occurring after an Ao(A2) layer involves removal 
of one layer with the subscript 1 (3), hence the subscript 
of the layer following an Ao(A2) layer is 2(0) and thus 
the layer type is C2(B0) as shown in Fig. l(a) and (c). 
One can similarly obtain the subscript in the other 
cases. Again as noted earlier, only intrinsic c, 2c, 3c, ch 
and extrinsic 4c, cch faults can occur after B1 or (73 
layers with probabilities C~c, a2c, a3c, O~ch, a4e, acch 

respectively. Thus the layer following B1(C3), viz. 
A2(Ao), in the absence of a fault occurs with probabil- 
ity Gc(a) = (1 - a c -  a2c-  a3c- acn -  a4c-  accn). Conse- 
quently, the layer following BI(C3) in the presence of a 
fault is C(B). The subscripts can again be found from 
arguments similar to those advanced above. The tran- 
sition probabilities from the four ordinary type layers 
and the six extra-ordinary type layers to the next 
possible layer are summarized in the probability trees 
in Fig. 1. From the Figure, we observe that an m-layer 
with the subscript j = 0  can arise in the following six 
ways: 

(1) "From an (m-1)-layer with j = 0  occurring with 
probability P(m-1,0,k3o h -  1) followed by an intrinsic 
3h fault occurring with probability a3h. 

(2) From an ( m -  1)-layer with j =  1 occurring with 
probability P ( m -  1, 1, k~ c -  1) followed by an intrinsic 
2c fault occurring with probability a2c. 

(3) From an (m-1)-layer with j = 2  occurring with 
probability P ( m -  1, 2, k ~ -  1) followed by an intrinsic 
h fault occurring with probability an. 

(4) From an (m-1)-layer with j =  3 occurring with 
probability P ( m - 1 ,  3) followed by no fault with pro- 
bability Go(a). 

(5) From an (m-1)-layer with j = 3  occurring with 
probability P ( m -  1, 3, k6 h -  1) followed by an intrinsic 
ch fault occurring with probability aen. 

(6) From an (m-2)-layer with j =  3 occurring with 
probability P ( m - 2 ,  3, k t en -  1) followed by an extrin- 
sic ¢ch fault occurring with probability c~c~. 
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The probability,  P(m, 0), of  obtaining an m layer with 
j = 0  is the sum of  the probabilities of  the above six 
events and is thus given by 

P(m, O) = (1 - ~Zc- ~Z2c - ~Z3c - ach -- 0~4c-- O~ccn) P(m -- 1,3) 
+ ~zhP(m -- 1,2, kho-- 1) + a2cP(m-- 1,1, kg c - 1) 
+a3aP(m-  1,0,k~ h -  1 ) + a c n P ( m -  1,3,k~ h -  1) 
+ a c c n P ( m - 2 , 3 , k  con- 1),  m > 2  (16) 

Similarly, 

P(m, 1)=(1 - -  O~h - -  O~2h - -  O~3h - -  O~ch-- O~cch) e ( m  - -  1, O) 
't- ~xcP(m - 1,1, k~ - 1) + <z2hP(m - 1,2, k 2h - 1) 
-q-O~3cP(m-- 1,3,k 3c-  1)+~ZchP(m-- 1,0,k~ h -  1) 

4c q- ~z4cP(m -- 2, 3, k~ - 1) 
+~ZcchP(m--2,0,k cch- 1), m > 2  (17) 

P(m, 2) = (1 - ~xc - ~Xzc- a3c- teen - O~4c - C~cch) P(m - 1,1) 
+ a n P ( r n -  1 , 0 , k ~ -  1)+<z2cP(rn- 1,3,k 2~-  1) 
"-]- O~3h P(m - 1,2,k32 h -  1) + ~zcnP(rn - 1,1,k~ h -  1) 
+ a c c n P ( m - 2 , 1 , k  c o b - l ) ,  m > 2  (18) 

P(m,3)=(1--~za--a2n--a3a--acn--<Zcch) P(m--  1,2) 
+o~cP(rn- 1, 3 , k g -  1) + 0~2aP(rn- 1,O,k 2~-  1) 

-bo~3cP(m- l, 1,k 3c-  1)+C<chP(m- 1,2,k~ h -  1) 

"-~ ~ 4 C  P ( m -  2,1, k 4c - 1) 
+~cc~P(m-2 ,2 ,k  ccn- 1),  m > 2  (19) 

Let us define 

J(m,] )= ~, P ( m , j )  exp [i¢amO] (20) 
All k ' s  

where the summat ion  extends only over those values of  
the k's which correspond to a particular value of  j.  
Consider the value of  J(m, 0). Substituting for ¢amO 
from equation (15) (with j = 0 )  and for P(m, 0) f rom 
equation (16) in equation (20), we have 

J ( m , 0 ) =  ~ ( (1 - -O~c- -O~2c- -O~3c- -O~ch- -O~4c- -O~cch)  
All k ' s  

× P ( m -  1,3) + a a P ( m -  1,2,ko h -  1) 
+o~2cP(m- 1,1,kg c -  1)+~3a P ( m -  1,0,k~o h -  1) 
+o~caP(m- 1,3,k~) h -  1) 
+ ~cca P ( m -  2, 3,k cca- 1)} exp [iq~o(Kp- K.)] 

= (1 - 6 0 -  ~2c- O~3c - -  O~ch - -  0~4C - -  O~cch)  

P ( m -  1,3) exp [i~Oo{-- 1 + ( K p - K n ) } ]  

x exp [ +  i~0] 
+an ~, P ( m -  1,2, ko h -  1) exp [i~0 { K v -  1 - Kn}] 

x exp [ + ifpo] 

Gh(O0 B1 Gh(o¢) C3 

Ao 

B1 

C2 

O~2h 
C3 

6C3h 
Co 

O~ch 
C1 

O~eca 1 

C o ~ z -  B1 
G~(~) 

A2 

O~c 

C1 

0~2c 
Co 

0~3c 
C3 

O~ch 
C2 

0~4c 1 
C1 el . . . . .  A 3  

O~ccn 1 
C1 e2 - A 2  

A2 

C 3 - -  

O~h 

Bo 

O~2h 
B1 

o~3n 
B2 

O~ch 

B3 

O~cch 

B2e2 . . . . . .  

Gc(~) 
AO 

O~c 

0~2c 

0~3c 

~eh 

B3 

B2 

B1 

Bo 

O~4c 1 

C3 

B3 el - - -  A1  

O~cclz 1 
B3  e2 . . . . .  AO 

. _ _  

Fig. 1, Probability trees for .su.ccessive layers [Ge(c<) = ! - ~c- C<3c- 0<.3c- ~.cn - ~.4c- ~-¢¢n ; Gn(~) = ! - ¢<n - ~2_n - ~gn - ~¢n - ~-ccn], 
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+a2e ~ P ( m -  1,1,k~ ~ -  1) exp [i(po 
x {1 + ( K ~ - K n +  1)}] exp [+  itpo] 
+ a3n ~, P ( m -  1, O, kg n -  1) exp [i~oo 

X ( K p - K n +  1}1 exp [ -  hp0] 
+ acn ~ P(m - 1,3, kg h -  1) exp [ha0 

x { -  1 + ( K v -  1 - Kn)}] exp [ -  i~00] 
+ aecn ~, P ( m -  2, 3, keen-  1) exp [i~00 

x { - l + ( K v - K n ) } ] e x p [ + i ¢ o ] , m > _ 2 .  (21) 

Again the summation extends over those values of  the 
k 's  for which j =  ( m -  K~ + Kr) mod 4 = 0 which is 
equivalent to f i n - 1 - K ~ + K r )  mod  4 =  3 or ( m - 1 -  
Ki + K  r - 1 )  mod 4 = 2  etc. Utilizing equations (15) and 
(20) and inserting CAmOl, CamO z and J(m, j )  on the right 
hand side of  equation (21), we have 

J(m, 0)=(1  - - a c - - a 2 c - - a 3 c - - a c h - - a g c - - a c c h )  o9 

x J(m - 1,3) + anco J(m - 1,2) 

÷ a2e(,O J ( m -  1,1) + a3h(.D 2 J(m - 1, O) + achOO z 
X J ( m -  l, 3) + acenO9 J ( m -  2, 3) ,  m > 2 ,  (22) 

where co = exp [i~oo] = exp [2zri/3]. Similarly 

J(m, 1 ) = ( 1  - a n -  a2n-  a~n-  a , h -  a~h)~o 
x J(m - 1, O) + acco J(m - 1,1) 

÷ aZhO.) J(m - 1,2) + a3c(.O 2 J(m - 1,3) + achO.) 2 

x J ( m -  1, O) + a4e(.O J(m - 2, 3) + acchC.O 
x J ( m -  2, 0) ,  m > 2 .  (23) 

J(m, 2) = (1 - ac - a2c - aae - ach  - a4¢ - aecn)09 2 

x J ( m -  1,1) + ah(.O 2 J(m - 1,0) + a2co9 2 J(m - 1,3) 

+ 0~3~c,0 J(m - 1,2) + achCO J(m - 1,1) + acch(.O 2 

x J ( m -  2,1) m > 2 .  (24) 

J ( m ,  3 )  = (1  - a n  - a 2 n  - a 3 n  - a c n  - ac~n)~o2  

× J ( m -  1,2) + acco 2 J(m - 1,3) + aEn(.o 2 J(m - 1, O) 

Or- a3e(.O J ( m -  1,1) + achcO J ( m -  1,2) + a4c(_D 2 

x J ( m -  2,1) + accnCo 2 J(m - 2, 2) ,  m > 2 .  (25) 

Let the solution of  this system of  difference equations 
be of  the form 

J(m, j )  = Cfo . om (26) 

where C]o and 0 are functions of  the a's. Substituting 
this in equations (22) to (25), we obtain after rearrange- 
ment  

and * indicates complex conjugate. For  non-trivial 
values of C~o, the determinant  of  the first matrix must 
vanish. On simplification, we obtain 

08 + (ac ÷ a3007 ÷ (ac2- a~ ÷ a2c-  2a2h--a]c ÷ alh)Q 6 
+ [ a n ( 1  - a n )  - 2 a a ¢ ( 1  - a 3 ~ ) ] 0 5  - [ ( 1  - ac) 2 

+ ( 1 -  ah)2-- 2(a~., + a20 + ( 1 -  a3c)2 + (1--a3h) 2 
+ {1 - 3a~n(1 - -  a c h ) )  2 -  3a4c(1- a4c) -- (1-- acch) 4 
-- 3]Q 4 -- 4acch(1 - -  a c c 0 3 Q  3 - -  6a2ch(1 - -  a c e 0 2 0 2  

-- 4ac3ch(1 - a¢~h)O - a4cch = O .  (30) 

It  may be pointed out that  equation (10) of  Jagodzinski 
(1949), equation (23) of Gevers (1954) and equation 
(38) of  Holloway (1969) can be obtained from the 
above equation by putt ing the appropriate  £ s  equal to 
zero. The roots of  equation (30) are 

O0 = 1 - 3(ae + an + a2c + aah ÷ 2acn + a4c (31) 

01 = - ¼ ( a e -  a n  + 2 a 3 0  + a 3 n -  4aeen) 
- -  i[1 -- ¼ (2ac + 2 a n  ÷ a2c -[- 4 a 2 h  ÷ 2 a 3 c  ÷ 2 a 3 h  

+ 6acn + 3a4e ÷ 4acch)] (32) 

02 = - -  1 + ¼ (ae + an + 3a2c ÷ 4a3c ÷ a3h "a t- 6acn 

÷ 3a4c  ÷ 8aeen) (33) 
03 : - -  ¼ ( a c  - -  a h  -1 t- 2 a 3 c  ÷ a3h  - -  4 a c c n )  

+ i[1 - ¼ (2ae + 2an + a2e + 4a2n + 2a3c + 2a3n 
+ 6ach + 3a4c + 4acch)] (34) 

04 = - aech (35) 

Since 01 and 03 are complex conjugates, we simplify 
calculations by putting 

01 = - R exp [ + ix] (36) 

03 = - -  R exp [ -  ix] (37) 
where 

R = 1 - ¼ (2c~c + 2an + aEc ÷ 4a2h + 2a3c ÷ 2a3h + 6acn 

÷ 3a4c  ÷ 4accn) (38) 

Z = tan -1 [4 / (ae-  an + 2a30 ÷ a3h--  4aeek)] • (39) 

Letting Z0 be the value of  Z for ae=an=a3c----a3h= 
aecn = 0, it follows that  

02 - -  a3 n(.O20 

- F K a ) c o e  - a ~ n c o  

-- anco20 
- -  a2n(,o20 

- -  a2c(,O 0 

02 - -  acO.)0 

- Fe* (a)co20- aeenco2 

- -  aac(,O 0 - -  a4eCO 2 

where 

Fc(a)=l--ae--azc--a3e--ach(1--( .D)--a4e--acen (28) 
Ft,(a) = ! -  ~ t ~ - ~ t ~ - a ~ - a c t ~ ( 1 -  co) -  acc~ (29) 

- ahco 0 
a2h(_D 0 

0 2 -  a3ho90 
- -  F ~  * ( a ) o . ) 2 0  - -  aechCO2 

- I-C °l 
/ / c ¢ o /  

- / / c ¢ ° /  

7C 
Z0 = ta n-1 oo = - 

2 

A more convenient expression for X is as follows; 

= 0  

(27) 

(4O) 
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Z=Zo+(Z-Zo) 

- 2 ¼(~zc-~zn+2~z3c+~z3n-&zcen). (41) 

Equation (30) can be shown to hold for sequences 
originating with other types of layers as well. Now 
since 

(exp [i~m]>= ~ P(qbm) exp [iqbm] (42) 

it follows from equations (20) and (26) that 

(exp [iCm]>= ~ CvOv m , m >0 
P 

(43) 

where P(~m) is the probability of having a phase dif- 
ference q~m in an m layer sequence and 

c~=c¢o+ cg~ + c¢~+ c c~ 

- - I )  - - 1 )  ~ V ~ O - -  ~ V ~ 0  

v = 0 to 4 (44) 

The C~'s can be evaluated in three steps as follows: 
First we find the probability wj of finding a layer with a 
particular value of j on passing through an arbitrary 
region of the crystal. Next we find five initial conditions 
i.e. the values of (exp [i~m]> for m = 0  to 4. Finally, 
the C,'s are found. Consideration of the sequences in 
Fig. 1 leads to the following relations among the w's 

W 0 ~ O~3hW 0 --~ O~2cW 1 + O~hW2 

+ (1 - ~ - ~z , -  ~3, - ~4~ - ~n)w3 + w~2 

w~ = (1 - a n -  ~ -  ~3~- ~,,~)Wo + ~w~ 
+ ~2~w2 + ~cw~ + w~ + w~2 

W 2 = O~hW 0 -~- (1 - ~e-- ~2c- ~3C --  ~4C --  O~cch)W1 

"~ O~3h W 2 "4- O~2cW 3 "q- Wel 2 

W 3 = O~2hW 0 "~- O~3cW 1 "3 t- (1 - a n -  ~X2h --  ~3h - -  O~Cch)W2 

+ o~w3 + w~ + w~z 

w~=~4cW~ ; 

W~} 2 : O~cchWo ; 

wg?=~nw2 ; 

(45) 

(46) 

(47) 

(48) 

w~l=o~4cw3 (49) & (50) 

wV=o~¢,nWl (51) & (52) 

W~ "2 = O~echW 3 . (53) & (54) 

The superscripts ex and ez refer to extra-ordinary layers 
due to extrinsic 4e and extrinsic cch faults respectively 
and the subscript for these layers is the same as that 
of the prior layer. Also 

W O ..~ W I .q_ W 2 ..~ W 3 .~t_ W le l ..~ W 3e l ..~ WOe 2 

w 2 +w3-= 1 

From equations (45) to (55), we get 

(55) 

O~3h ) O~c O~h 0~3c "4- T --0~4¢--0~¢ch wo=w2=¼ 1 - ~  + 2 2 (56) 

~c ~h ~3c (Z3h 
w~=w3=¼ 1 +  2 2 + 2 2 

Wel I ~ W~ 1 = ¼0~4c 

w~ = wel~= wl ~ = ~ = -40~cch . 

~Zccn) (57) 

(58) 

(59) 

Considering all the possible sequences starting with 
layers of type A0, Ba, A2, C3, Cel l, B~I, Cgz, Cel2, B~ 2, B~2, 
one can obtain (exp [iCmXq> in each case (Xj is the layer 
type) for m = 0 to 4. Since 

(exp [iCm]>= Y~ wj (exp [i~bmXJ]> + ~ W~I (exp [i~x~l]> 

+ ~ w~2 (exp [i~x~2]>, (60) 

one can find (exp [i~m]> by substitution for the w's 
from equations (56) to (59). Thus 

(exp [i~0]} = 1 (61) 

(exp [i~,]> = - ½  (62) 

(exp [i052] ) = ¼[1 - } (C~c- an + 2~2c-- 2~2h + 3~3c 

- -  3e3h + 40~4c + 2C~cch)] (63) 

(exp [iq~3]> = -- ½[1 -- ~ (~e + 2~2c + 3C~3c + 2ecn + 4~4e 

+ 4~cch)] (64) 

(exp [i¢4]> = 1 - } (C~e + an + }ezc + ezh + 2e3e + c~3n 

+ 4ech + 2~4c'4- 50~cch) • (65) 

Substituting from equations (31) to (35) and (61) to (65) 
in equation (43) and solving for the C's, we obtain 

Co = ~ -  6-~ (O~c - -  O~h -4- 4~3c - -  3~3h -I- 4ach 

- -  20~4c + 80~cch) (66) 

C1 = ~ + ~ [(~c- an + ~3c-- 3~3n-- 2~ch 

i (~c + an + 4~2c + 2~3c-- 3~3h + 3~4e-- 60~cch) -- -~ 

-b 12~4c + 120~cch)] (67) 

Ca = ~-~" - ~-8~ (~c - ~h - 3~3~ - 4acn + "~O~4e) (68) 

C3 =~-~+ a-~ [(~c-- c~n + c~3c-- 3a3h -- 2C~0~ + 3~4c-- 6~cch)  

i (o~c+o~h+4o~2c+2o~3c--3~3n+ 12~4c+ 120~cch)] (69) 
+ 2  

C4= -~o~cc~. (71) 

Introducing Cr and C~ through 

Cr = § (C1-4- C3) = 1 + ½ (~c-  ~n + ~3c- 3~3h -- 2~ca 

+ 3~24c - 6O~cch) (71) 

C~ = §~ ( -  C~ + C3) = ¼ (a~ + c~ + 4~z~ + 2 ~ -  3a3a 

+ 1294¢ + 12~¢¢~), (72) 
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we can express C 1 and C3 as 

G=~(G- icd  

C3 =-~-6 ( Cr + iCi) . 

(73) 

(74) 

Substituting from equations (31), (33), (35), (36), (37), 
(73), (74) in equation (43) and simplifying, we have 

(exp [i~m])=CoOo m +3 (Cr cos m)c + C~ sin m)c) 
x(-R)m+C20~+C40'2 m>O (75) 

Proceeding as above, we have for negative values ofm 

(exp [i~m])= C000lml +3_ (Cr cos mz+ C~ sin [mix) 

( -  R)lml + fzozlml + C40t'21 m < O (76) 

Substituting from equations (75) and (76) in equation 
(3), we obtain for the diffracted intensity, 

I(h3)=Co~, 2 ~ 01g 'I cos 
m ~ --oo 

oo 
+ 3C~'z 7. (-R)lml [cos mz + G sin Iml)c] 

m ~ --oo 

÷ C 2 l f i  ¢2 ~ el2n]COS 
m = - - ~  

[ mgh3 ] (77) 
"]-C4u/CZm= ~ - e o  0121 cos t  2 J 

where we have expanded exp [imgh3/2] into cosine and 
sine components so that terms involving sin [mrch3/2] 
cancel in pairs. Utilizing the relations for cos A cos B 
and sin A cos B and expanding the second term in 
equation (77), the expression for the intensity reduces 
to 

1(h3)=Co~2 ~ 01~1cos [ - ~ ]  

+ l~-rCrNZ ~ Rlml { cos [ m (-~--h23 + Z - x ) ]  

+ G s i n  [Iml (_~Z + ) c - x ) ] }  

+ CzvZ ~, (-OE)lml cos [m ( g~h23 - g) ] 

+ ~-~-~CrV2 ~, Rlml {cos [m ( g---~ -Z  + g) ] 

+C4~2:(-Q4)lmlcos [m(g2-3--g)] . (78) 

Carrying out the summations, we get 

Co (1-0o2) • 
I (h3) = I//2- f _  2& cos [gh3/2] + 0~ 

+ _~V2 Cr (1 + 2C, R sin [gh3/2 + Z -  g] - RE) 
1 -- 2R cos [gh3/2 + Z -  g] + R2 

Cz (1-0~) + ~,2 
1 + 202 cos [gh3/2 - g] + 022 

C4(1--042) 
+ ~2 ~ + 204 cos [ ; / g / 2 : , l +  0~ 
+ 3~,2 Cr (1-2C~ R sin [gh3/2-z+g]-R 2) 

1 - 2R cos [gh3/2-)c+ g] + R 2 

(79) 

Description of diffraction effects 

For reflexions with H-K=O rood 3, sharp peaks 
corresponding to L = 0  rood 4 occur. For reflexions 
with H -  K #  0 rnod 3, the first, second, third and fourth, 
fifth terms on the right hand side of equation (79) give 
rise to broadened peaks corresponding to L = 0, 1, 2, 3 
rood 4. The fourth term gives rise to a rather diffuse 
peak which vanishes for acch =0. In general, there are 
changes in integrated intensity and peak broadening 
for all reflexions. In addition, reflexions with L =  + 1 
rood 4 exhibit peak shift and peak asymmetry. These 
can be utilized for estimating fault probabilities. 
Quantitative expressions for the profile characteristics 
mentioned above are given in the following. 

Determination of fault parameters from peak inte- 
grated intensity 

The integrated intensities To, T1, T2, T3 for refiexions 
with L=0 ,  1, 2, 3 rood 4 can be obtained by inte- 
grating separately the terms (considering the third 
and fourth terms together) on the right hand side of 
equation (79) and are: 

V 2 
To= ~--  [1-¼ (o~e- ~hW4~3e-- 30~3h 

+ 4c~cn- 2~4c + 80~cch)] (80) 

3~2 [1 +½ (ac-~h+ 323h 7"1 = - -4 -  c~3c- 

-- 20Cch + 3~4c-- 60etch)] (81) 
9~u z 

Z2= --4-- [1--¼ (0cc--~h--3~3h 
14 32 -4~cn+-ra4c -~a~ ,h ) ]  (82) 

3~2 [1 +½ (o~e--ah+a3c--3a3h :/'3=--- 4 

-2acn + 30qc- 60~cch)]. (83) 

For all a's equal to 0, To, T1, T2, T3 reduce to ~2/4, 
3vE/4, 9~2/4, 3~2/4 respectively, characteristic of the 
perfect d.h.c.p, structure. For non-vanishing values of 
the ~'s, there are changes in the integrated intensities, 
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However, in practice, it is easier to measure fractional 
changes in the ratios 

and 
R1-.~ T1/T 0 (84) 

R2= T~/To . (85) 

For the perfect structure R1=3 and R2=9. From 
equations (80) to (83), the fractional changes in R1 and 
Rz are given by 

AR1 
- - ~  4- ,/z3c- "x-a3h 4- 2ach 4- 3aeel~ R1 =~-ac s :z ts (86) 

AIR2 

R2 
-- ½ac -- ½~h 4- 3a3c-- z~X3h + 4aen + 3~4C 4-12aceh • 

(87) 

Thus from equations (86) and (87), we have estimates 
of two compound fault parameters. 

Determination o f fault parameters from peak shifts 

For reflexions with L =  + 1 rood 4, the peak shifts 
are given by 

1 
Ah3 = + - ~  (ac-- O~l~ + 20~3c + O~3h--4accl~) , 

L = _ + l m o d 4  (88) 

Converting to 20 coordinates we get for the peak shifts 

180 [Lid 2 
A(20) ° = + ~ -  e----- Y-  tan 0 ( a , -  an + 2a3e 4- a3h 

-4accn), L = + l m o d 4  (89) 

Thus measurement of A(20) ° leads to an estimate of a 
third compound fault parameter. We may add that 
experimental errors can be minimized by using a pair 
of neighbouring reflexions having opposite peak shifts 
and measuring the change in separation of the two 
peaks. 

Determination o f f  ault probabilities from peak broadening 

1. lntegral breadth analysis 

A simple measure of the peak broadening is the in- 
tegral breadth which is the ratio of the peak integrated 
intensity and the peak maximum. Dividing equations 
(80) to (83) by the respective peak maxima, we get for 
the integral breadths flj for reflexions with L = j  rood 4: 

fl0 = { (ae + an + a2c + =3n + 2aca + 0C4C) , 

L = 0 rood 4 (90) 

fix =/73 = (ac + a~ + ½oc2c + 2~2h + ~3C 4- aah 4- 3c~c~ 

+ ~z4e + 2acc~), L = + 1 rood 4 (91) 

f12 = ½(ae 4- an 4- 3a20 4- 4a3c + a3h 4- 6aen + 3a4e 4- 8acch) , 
L = 2 rood 4 (92) 

Thus measurement of rio,/71 or/?3 and/72 leads to esti- 
mates of three more compound fault parameters. In 
order to convert the integral breadths to 20 coordinates 
we need multiply the expressions (90) to (92) by 
(2/cos 0) (ILl d/e2). 

2. Fourier analysis 
Another measure of broadening is the initial slope 

of the Fourier coefficients of a peak. Following Warren 
(1959), we convert equation (78) to the observable 
power distribution in a powder pattern reflexion. 
Considering each reflexion as 00l in terms of ortho- 
rhombic axes a~ and its reciprocal b~, we express the 
powder pattern peak shapes P'2o by four Fourier series 
in which the Fourier coefficients are correctly expressed 
only for small values of n: 

(i) L =0  mod 4 

, GCo ~n [1 [hi ILld 
P 2 0 -  b~ b~ " e2 "3(ae+ah 

a2e 4- O~3h 4- 2aeh4-Oqe)] × COS 2zrn (h i - l ' ) .  + 
a 

(93) 

(ii) L = 1 rood 4 

, GCr [ Inl ILId 
P2°=l"i~ - ~ 3  , ~ tl  , 2(ae+an+½a2e+2a2h ba e 2 

4-a3e4-a3h4-~4e4-2aeeh)] × [COS 2zcn (h i - l '  

+ C ,  sin 2zcln[ ( h i - l ' - 6 ) ] .  (94) 

(iii) L = 2 rood 4 

, GC2 [ Inl IZld 
P2o=--~3 ~ [1 ba' C 2 (°~e4-ah+3a2e+4a3e4-a3h 

+ 6acn + 3a4c 4- 80~eeh) ] X COS 2xn (h i - l ' ) .  (95) 
.I 

(iv) L = 3 mod 4 

, GCr [ Inl IL[d 
P2o=1-~-~3 ~ [1 , .  2(o~c+ah+½aze b 3. C 2 

4- 2azh Jr- a3e 4- a3/~ 4- 3acn + 32-a4e 4- 2acch) 

x [COS 2nn (h i -  l '  + 6 ) -  C~ sin 2re In[ (hl - l '  4- 6)] 

(96) 

where 

5 1 lL[d 1 
= b-~- " e ---T- " 2re ( ae -  ah + 2a3e + a3h-  4a~cD • (97) 

Let the Fourier cosine and sine coefficients be repre- 
sented by An and Bn respectively. Expressing the 
coefficients in terms of a real length Lo=nai=n/b'3, 
we get 



tO  

z 
50 

n~ 

4C 

CO 
z 
N 2o 
z 

" '  10 --, 
,< 

u. 00.5 u. 1 
GI  

ac=0 ' l  

2 h~-, 
(b) 

a2h=0"l  

I - -  

c)  
>- 
rr" 
.< 
e,e. 

I'-" 

z 
I.kl 
I -  
z 

,=, 
i i  

1 

J ~ -  J ~  -4,- - + 4 - - ~ 5  2 h a "  3 4 4'5 " , 2 h ~ . .  
(a) - t a )  

>. 50 

--- 40 

5 
~ 30 

z 

N 2o 
z 
e~ 
u.I 
D- 10 

u. 0 
- -  ) '5  1 £3 3 4 

ah=0 ' l  

4"5 2 hs-~ 3 4 4"5 
(e) 

O3 

~ 1 2  

___10 
net 
n-- 

5 8  

~ 6  

_z 4 

G2 
" 0 
u. ~'5 

a3c=0"1 
4-  

62 X - R A Y  D I F F R A C T I O N  FROM D O U B L E  H E X A G O N A L  CLOSE-PACKED CRYSTALS 

O3 

- - - 1 4  
Z 

> ' 1 2  

!1= 

5 8  

o3 6 
z 
u.I 
I-- 

___ 4 

~ 2 

,, Ol 
u. 0"5 

G2c=0"1 

50 

O3 
_v- 
z 

nr" 

i -  

5 

z 
kid 

u 

E3 
LM 

G 

40 

30 

20 

10 

a3h=0"l  

1 2 hz-* 3 4 4"5 0'5 1 2 hs -~ 3 4 4"5 
(c) (f) 

Fig. 2. D i f f r ac t ed  in tens i ty  as a f u n c t i o n  o f  h3: (a) in t r ins ic  c fau l t s  (~c = 0"1), (b) in t r ins ic  h fau l t s  (an = 0"1), (c) in t r ins ic  2c faul t s  
(azc=0-1) ,  (d) in t r ins ic  2h faul ts  ( a zn=0 .1 ) ,  (e) in t r ins ic  3c faul t s  (~3c=0.1) ,  ( f )  in t r ins ic  3h faul t s  (0~3h=0.1). 
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Fig. 2 (cont.). (g) intrinsic ch faults (~en=0"l), (h) extrinsic 4c 
faults (e4,=0"l), (i) extrinsic cch faults (ec,n=0"l). 

_ [ dA/~] _ 1~_~2_. 3r.ld (c~c+c~n 
\ dL0 ]o 

+O~2c-]-O~3h-t-2OCch+O~4c ) , L = 0  mod 4 (98) 

_ [ dALo ~ IZld 
\ ~ ] o  = cZ 2 (C~c+en+½e2c+2~zn 

-[" O~3C-Ji- O~3h Al- 3~Zch + 30~4C-[- 20~CCh) , L = +_ 1 mod 4 (99) 

_ [ d A L o ]  - ILld 
\ ~ ] o  eZ ( ~ + ~ +  3~2e+4~3c 

+~3h+6~e~+3~4e+8~eeh), L = 2  rood 4 (100) 

Thus, measurement of the initial slope from plots of 
Ar o against Lo leads to estimates of the same compound 
fault parameters as obtained from integral breadth 
analysis. 

Determination of  fault probabilities fi'om peak asym- 
metry 
1. Fourier analysis 

A simple measure of asymmetry is the ratio Bn/An 
of the Fourier sine and cosine coefficients. Since Bn = 0 
for reflexions with L = 0 and 2 rood 4, these reflexions 
are symmetric. For reflexions with L = + 1 rood 4, we 
obtain from equations (94) and (96) 

B n  

An 
-- +_. ¼ (0~e -a t- ~h + 40C2e -t- 2~3e-- 3~3h 

-Jr 12~4c-F 12~ech), L =  + 1 mod 4 .  (101) 

There are, however, serious limitations in the accurate 
measurement of the sine coefficients. 

2. Centroid shift 
Another measure of asymmetry is the shift of the 

centroid of a profile from its peak maximum position. 
Following Cohen & Wagner (1962), this is given by 

1 Bn 
( -  1) n - - .  (102) ( A h 3 ) e e n t r o i d  = 21r , , 0  n 

Substituting from equations (94) and (96), converting 
to 20 coordinates and simplifying, we have 

90 ln2 
A(20)°eentroia= + 7rT--tan 0 (aa-l-a/~-t-4a2c-t-2a3c 

-3~x3h-t-12a4c-1-12etch), L =  + 1 rood 4 .  (103) 

Thus, measurement of asymmetry leads to an estimate 
of a seventh compound fault parameter. 

D i s c u s s i o n  o f  r e s u l t s  

Independent estimates of seven compound fault param- 
eters obtained from measurements of the profile 
characteristics mentioned above are summarized here" 
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AR1/R1 
AR2/R~ 

2zAh3 

~o 
& 
& 
Bn/An 

+¼ 4s 0 0 + ~  14s + 2  0 0-] - ~zc - 
+½ --½ 0 0 +3  - 3  + 4  +½ + ~ /  c~n 
+ 1 - 1 0 0 + 2 + 1 0 0 -- ~2e 

= + {  + 3  + {  0 0 + {  + 2  +1  + 0 ,  ~/  Cx2/~ O~3e 
+1  +1 +½ + 2  +1 +1 +3  + {  ~X3h 
+½ +½ +-~ 0 + 2  +½ +3  + s  ~cn 

+¼ +¼ + 1 0 +½ - ¼  0 + 3 + 3_ I ~4c _O~ceh_ 

(104) 

Obviously, all the nine fault probabilities cannot be 
evaluated. In fact, only seven parameters are sufficient 
to satisfy any observed data. The choice of parameters 
is guided to some extent by the theoretical restriction 
that 0 < e <  1. In practice, we can omit from consid- 
eration two faults with the highest energies. These 
energies are based on the energies of transformation 
to the f.c.c. (TTC) and h.c.p. (7TI¢) structures. Thus 
three cases need to be considered )'rc>~'Tn, ?TC ~ -- ?'Tn 
and ?TC~ ?Tn. The faults having the highest energies 
in the three cases are respectively (1) intrinsic 3c and ex- 
trinsic 4e, (2) intrinsic 3h and extrinsic 4c, (3) intrinsic 
2h and intrinsic 3h. Omitting the pair of faults with 
bSghest energy in any given case, one can solve equation 
(104) to obtain the remaining As. 

We may point out that broadening and displacement 
of peaks can be understood by simple geometrical 
considerations (Lele & Rama Rao, 1970a, b). 

The variation of intensity in reciprocal space for all 
the faults is illustrated in Fig. 2 for a particular value 
of the fault probability. The different diffraction effects 
of the nine faults are clearly brought out here. 

In practical situations small domains and distortions 
within the specimen in addition to stacking faults are 
likely to be present. The effects of distortion can be 
separated by the multiple order technique of Warren & 
Averbach (1952) while the effects of domain size may 
be separated by considering reflexions with H - K = O  
rood 3 which are not affected by faults. Effects of 
violation of assumptions (3) to (6) are not known. 

Several rare-earth metals and their alloys are known 
to exhibit the d.h.c.p,  structure (Speight, Harris & 
Raynor, 1968). Further, several noble metal alloy 
systems exhibit d.h.c.p,  electron phases intermediate 
in composition to the f. c. c. solid solution and the h. c. p. 

phase and some alloys of titanium (TiNi3 and TiPd2) 
also crystallize in this structure (Schubert, 1964). This 
four-layer structure has been observed by subjecting 
some metals and alloys to high pressure (Jayaraman, 
1965; Perez-Albuerne, Clendenen, Lynch & Dricka- 
mer, 1966). Interesting information regarding propen- 
sity to faulting on deformation and/or transformation 
of these substances can be obtained by powder dif- 
fractometer studies. Preliminary studies on plastically 

deformed TiNi3 by Anantharaman & Vasudevan 
(1970) indicate the predominance of intrinsic ch faults. 
Further studies on TiNi3 as also TiPd2 are presently 
in progress. 
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